
Dr. Roxana Dumitrescu

Department of Mathematics

King’s College London

email: roxana.dumitrescu@kcl.ac.uk

Exercises C++

SHEET 1

1 Basic Data Types, Casting and Operators

Problem 1. Write a C++ program which prints five different basic data types and the

number of bytes that each uses. Try out various combinations of long and unsigned etc.

Problem 2. Cast char values to int values to find codes used for the characters ’a’, ’z’,

’A’, ’Z’, ’0’, and ’9’.

Problem 3. Write a program that reads in a character char from the keyboard and

then displays one of the following messages:

• If <char> is a lower case letter, the message ”The upper case character corresponding

to <char> is ...”

• If <char> is an upper case letter, the message ”The lower case character corresponding

to <char> is ...”

• If <char> is not a letter, the message ”<char> is not a letter”

Problem 4. Write a program where the user enters a decimal number and the code

prints out the nearest integer. You should use cast as part of your solution. Write a second

version using the cmath library.

Problem 5. The following code contains several bugs. Fix them.

include <iostream>

include <cmath>

using namespace std;

int main(){

cout<<"Type 0 for stone, ";

cout<<"1 for scissors, 2 for paper \n";

cout<<"Enter player 1’s move \n";

cin>>player1;

1

cout<<"Enter player 2’s move \n";

cin>>player2;

if (player1=player2) {

cout<<"Its a draw \n";

} else {

diff=player1-player2;

if (diff==-2 || diff==1){

cout<<"Player 1 won \n";

} else {

cout<<"Player 2 won \n";

}

}

}

2 Flow of control and user-defined functions

Problem 1. Write three functions which compute the factorial of a natural number n

(i.e. n!) using: a for loop, a while loop and a do-while loop.

Problem 2. Write a program which will raise any number x to a positive power n using

for loop. Write a second version using the cmath library.

Problem 3. Write a recursive function to compute the sum of the numbers between 1

and n.

Problem 4. Write a function that takes two integer parameters a and b and prints out

all the numbers from a to b.

Problem 5. The n-th Fibonacci number can be defined by xn = xn−1 + xn−2 if n ≥ 2.

We define x0 = 1 and x1 = 1. Write a function fibonacci that evaluates the n-th Fibonacci

number by recursion.

Problem 6. Write a function which prints the square roots of the equation:

ax2 + bx+ c = 0.

Problem 7. A commonly occuring function in financial mathematics is the cumulative

normal function defined by:

normcdf(x) = N(x) =
1√
2π

∫ x

−∞
exp(−t

2

2
).

2

If (x ≥ 0) we define:

k =
1

(1 + 0.2316419x)
.

A good approximation for N(x) is given by:

1− 1√
2π
exp(−x

2

2
)k(0.319381530 + k(−0.356563782 + k(1.781477937 + k(−1.821255978 + 1.330274429k))))

For x ≤ 0 you can use the same formula to evaluate 1−N(−x).

The formula can be derived by choosing the general functional form and then finding the

coefficients that give the best fit. For this question, you should just accept the formula on

face value.

Write a function called normcdf to evaluate the cumulative normal function.

In order to simplify your normcdf function use a Horner function which is defined as

follows:

For each n ∈ N,

h0(x, a0) = a0,

hn(x, a0, a1, ..., an) = a0 + xhn−1(x, a1, a2, ..., an).

We call these ”Horner functions” because they use the Horner method of evaluating a

polynomial. Any polynomial in x can be written as

hn(x, a0, a1, ..., an) = a0 + xhn−1(x, a1, a2, ..., an)

for appropriate constants ai. The advantage of using h to evaluate the polynomial is

that you don’t have to compute high powers of x.

Problem 8. Implement the Moro algorithm for the inverse function of the cumulative

normal distribution. Call the resulting function norminv.

Moro algorithm

Suppose x ∈ [0, 1]. Define y=x-0.5. If |y| < 0.42, define r = y2 and approximate

norminv with the following formula:

3

y
h3(r, a0, a1, a2, a3)

h4(r, 1.0, b1, b2, b3, b4)

. We will define the constants ai and bi shortly.

Suppose |y| >= 0.42. If y is negative let r = x. Otherwise let r = 1− x. Define

s = (log(−log(r))).

Define t by

t = h8(s, c0, c1, ..., c8).

If x > 0.5, norminv is approximated by t, otherwise by −t.
The table of values for the constants a0, ...a3, b1, .., b4, c0, ..., c8 is given on the next page.

4

{my-label}
a0= 2.50662823884;

a1= -18.61500062529;

a2 = 41.39119773534;

a3= -25.44106049637;

b1= -8.47351093090;

b2= 23.08336743743;

b3= -21.06224101826;

b4= 3.13082909833;

c0= 0.3374754822726147;

c1= 0.9761690190917186;

c2= 0.1607979714918209;

c3= 0.0276438810333863;

c4= 0.0038405729373609;

c5= 0.0003951896511919;

c6= 0.0000321767881768;

c7= 0.0000002888167364;

c8= 0.0000003960315187;

5

