
Roxana Dumitrescu

C++ in Financial Mathematics

What have we learnt?

Arrays; relation between arrays and pointers..
Returning arrays from functions
Passing arrays to functions
Intoduction to classes

Plan

Classes
Overloaded operators
Study case: Complex class
Working with multiple files

Classes

A constructor is a member function of a class that has the same
name as the class. A constructor is called automatically when an
object of the class is declared. Constructors are used to initialize
objects.

Rules

• A constructor must have the same name as the class.
• A constructor definition cannot return a value. No return

type, no void.

Classes

The class BankAccount

class BankAccount
{ public:
BankAccount (int dollars, int cents, double

rate);
BankAccount();
double get_balance();
double get_rate();
void output(); // print
private:
double balance;
double interest_rate;
};

Classes

int main()
{
BankAccount account1(999,99,5.5), account2;
account1.output();
account2.output();
return 0;
}

Classes

Constructor 1

BankAccount::BankAccount(int dollars, int
cents, double rate)

{ if((dollars<0)||(cents<0)||(rate<0))
{ cout<<"Illegal values for money or interest

rate. \n";
exit(1);}
balance=dollars+0.01*cents;
interest_rate=rate;}

Classes

Constructor 2: Default constructor

BankAccount::BankAccount(): balance(0);
interest_rate(0.0){};

Note that the last constructor definition is equivalent to

BankAccount::BankAccount()
{ balance=0; interest_rate=0.0;}

Classes

• We have 2 constructors. In other words, the constructor is
overloaded.
• The first one is called constructor with parameters and

the last constructor is called default constructor.
A default constructor is simply a constructor that doesn’t
take parameters. If a default constructor is not defined in a
class, the compiler itself defines one.
Often times we want instances of our class to have specific
values that we provide. In this case, we use the
constructor with parameters.

Classes

You can think of a constructor as a function that is
automatically called before anyone is allowed to see the
object. Technically speaking it isn’t actually a function
because it can only be called when the object is being
initialised and because it doesn’t have a return value.
As we have seen in the example, inside the definition of the
constructor you should set all double, int etc. fields to
sensible default values. More generally, you should ensure
that the object is in a consistent state before anyone sees it
and you should perform whatever processing is required to
achieve this.

Classes

Using constructors

Class_Name Object_Name(Arguments_for_Constructor);

BankAccount account1(999,99,5.5);

Classes

Copy constructors

We have seen:
The default constructor
The Parametrized constructor

The copy constructor is a constructor which creates an object
by initializing it with an object of the same class, which has been
created previously. The copy constructor is used to:

• Initialize one object from another of the same type
• Copy an object to pass it as an argument to a function
• Copy an object to return it from a function.

Classes

Copy constructors

Name_of_class Object_name (const Name_of_class &
object){...}

Here, object is a reference to an object that is used to initialize
another object.
If a copy constructor is not defined in a class, the compiler itself
defines one.

Classes

Destructor

A Destructor is a special member of a class that is executed
whenever an object of its class goes out of scope. Destructors
are very useful for releasing resources in the case of dynamic
allocation memory in the constructor (we’ll see an example
later!).

~Name_of_class(){...};\\

Example (in the case where is no dynamic allocation)

~BankAccount(){};

Classes

This pointer

Every object in C++ has access to its own address through a
pointer called this pointer. It can be used inside a member
function in order to refer to the invoking object.

BankAccount::BankAccount(int dollars, int
cents, double rate)

{ if((dollars<0)||(cents<0)||(rate<0))
{ cout<<"Illegal values for money or interest

rate. \n";
exit(1);}

*this.balance=dollars+0.01*cents;

*this.interest_rate=rate;}

Classes

This pointer

(*this).balance=dollars+0.01*cents;
(*this).interest_rate=rate;

has the same meaning as

this->balance=dollars+0.01*cents;
this->interest_rate=rate;

This is a pointer to the an object of the class BankAccount.
IMPORTANT RULE: To access the member variables through a
pointer, use the operator −>!

Classes

This pointer

this always points to the object being operated on. More
precisely, "this" is a const pointer (for e.g. in the previous
example, this has the type BankAccount * const). You can
change the value of the underlying object it points to, but you can
not make it point to something else!

Classes

Some examples when you need the pointer this

(i) If you have a constructor (or member function) that has a
parameter with the same name as a member variable, you
should use "this" (if not, ambiguity!)

class YourClass{
private: int data;

public: YourFunction(int data){
this->data=data;
}
};

(ii) It will be used for the overloading of operators (you’ll see this
just in a few minutes!).

Classes

Static members

• While most variables declared inside a class occur on an
instance-by-instance basis (which is to say that for each
instance of a class, the variable can have a different value),
a static member variable has the same value in any instance
of the class. More precisely, static member variables and
static functions are associated with the class, not with
an instance. For instance, if you wanted to number the
instances of a class, you could use a static member variable
to keep track of the last number used.

Classes

Static members

• Since the static member variables do not belong to a single
instance of the class, you have to refer to the static
members through the use of the class name.

class_name::x;

• You can also have static member functions of a class. Static
member functions are functions that do not require an
instance of the class, and are called the same way you
access static member variables. Static member functions
can only operate on static members, as they do not belong
to specific instances of a class.

class_name::static_function;

Classes

Static members
• Static functions can be used to modify static member

variables to keep track of their values : you might use a
static member function if you chose to use a counter to give
each instance of a class a unique id.

class user
{ private:
int id;
static int next_id;
public:

// constructor
user();
static int next_user_id()
{ next_id++;

return next_id;}
};

Classes

Static members

int user::next_id = 0;

// constructor
user::user()
{
id = user::next_id++; // or
id=user::next_user_id();

}
};

The line

user a_user;

would set id to the next id number not assigned to any other user.

Overloaded operators

Operator Overloading in C++

In C++ the overloading principle applies not only to
fonctions, but to operators too. The operators can be
extended to work not just with built-in types but also classes.
A programmer can provide his own operator to a class by
overloading the build-in operator to perform some specific
computation when the operator is used on objects of that
class.
Overloaded operators are functions with special names the
keyword operator followed by the symbol for the operator
being defined. Like any other function, an overloaded
operator has a return type and a parameter list.

Operator Overloading in C++

Example 1.

int a=2;
int b=3;
cout<<a+b<<endl;

The compiler comes with a built-in version of the operator (+) for
integer operands - this function adds integers x and y together
and returns an integer result. The expression a + b could be
translated to a function call which would take the following form

operator+(a,b)

Operator Overloading in C++

Example 2.

double c=2.0;
double d=3.0;

cout<<c+d<<endl;

The compiler also comes with a built-in version of the operator
(+) for double operands. The expression c + d becomes
fonction call operator+(c,d), and function overloading is used to
determine that the compiler should be calling the double version
of this function instead of the integer version.

Operator Overloading in C++

Example 3.
Add two objects of class string (we’ll see this class more in
detail later).

Mystring string1="Hello, ";
Mystring string2="world!";
std::cout<<string1+string2<<std::endl;

The intuitive expected result is that the string “Hello, World!”
would be printed on the screen. However, because Mystring is a
user-defined class, the compiler does not have a built-in version
of the plus operator that it can use for Mystring operands. In this
case the operand will give an error. Conclusion: it is needed an
overloaded function to tell the compiler how the + operator
should work with two operands of type Mystring.

Operator Overloading in C++

Almost any existing operator in C++ can be overloaded. The
exceptions are: conditional (?:), sizeof, scope (::), member
selector (.), and member pointer selector (.*).
You can only overload the operator that exist. You can not
create new operators or rename existing operators.
At least one of the operators must be an user-defined type.
Is not possible to change the number of operands an
operator could support.
All operators keep their default precedence and associativity.

When overloading operators, it’s best to keep the function of the
operators as close to the original intent of the operators as
possible.

Operator Overloading in C++

A first classification of operators
Unary operators: they operate on a single operand and the
examples of unary operators are the following:

• The increment (++) and decrement (−−) operators.
• The unary minus (−) operator.
• The logical not (!) operator.

Binary operators have two operands, as for example the
addition operator +, the subtraction operator −, the division
operator (/) etc.

Operator Overloading in C++

A second classification of operators
Member operators of a class
• Unary operators

Class_type X{...public:
Class_type operator++(){...}
}

• Binary operators

Class_type X{...public:
Class_type operator+(const Class_type&

c){...}
}

There are operators which can be only declared as member
operators. Example: =, []...

Operator Overloading in C++

A second classification of operators
Non-member operators of a class
• Unary operators

Class_type X{...}

Class_type operator++(Class_type& c){...}

• Binary operators

Class_type X{...}
Class_type operator+(const Class_type& c,

const Class_type& d){...}

Since the unary operators only operate on the object they are
applied to, unary operator overloads are generally implemented
as member functions!

Operator Overloading in C++

Rules concerning operator overloading
If you are overloading a unary operator, do so as member
function.
If you are overloading assignement (=), subscript [],
function call (()) or member selection (− >), do so as
member function.
If you are overloading a binary operator that modifies its left
operand (e.g. operator + =) do so as a member function.
If you are overloading a binary operator that does not modify
its left operand (e.g. operator +), do so as a normal function
or friend function.

Study case: Complex class

Complex class

• Making a class for complex numbers is a good educational
example
• C++ already has a class complex in its standard template

library (STL) - use that one for professional work

#include <complex>
complex<double> z(5.3,2.1), y(0.3);
cout<<z*y+3;

• However, writing your own class for complex numbers is a
very good exercise for novice C++ programmers!

Complex class

How would we like to use the Complex Class?

void main()
{
Complex a(0,1);
Complex b(2), c(3,-1);
Complex q=b;
}
cout<<"q="<<q<<",a="<<a<<",b="<<b<<endl;
q=a*c+b/a;
cout<<"Re(q)="<<q.Re()<<",

Im(q)="<<q.Im()<<endl;
}

Complex class

Basic contents of class Complex
Private data members: real and imaginary part
Some public member functions:

• Constructors (in order to construct complex numbers)

Complex a(0,1); //imaginary unit
Complex b(2), c(3,-1);
Complex q=b;

• Other functions (not the complete list, just examples):

cout<<c.Get_Re();
cout<<c.abs();

Complex class

Basic contents of class Complex

Some operators declared in the public part:

• In order to write out complex numbers

cout<<"q="<<q<<",a="<<a<<",b="<<b<<endl;

• In order to perform arithmetic operations:

q=a*c+b/a;;

Complex class

class Complex
{
private:

double re,im; //real and imaginary part
public:

Complex();
Complex(double re, double im); // Complex
a(4,3);
Complex (const Complex &c); // Complex
q(a);
~Complex () {}
double Get_Re() const;
double Get_Im() const;

Complex class

void Set_Re(double);
void Set_Im(double);

double abs () const; //double m=a.abs();
// modulus
/*member operator*/
Complex& operator= (const Complex& c); //
a=b;

};

Complex class

/*non-member operator, defined outside the
class*/
Complex operator+ (const Complex& a, const
Complex& b);
Complex operator- (const Complex& a, const
Complex& b);
Complex operator/ (const Complex& a, const
Complex& b);
Complex operator* (const Complex& a, const
Complex& b);

Complex class

The simplest functions
• Extract the real and imaginary part (recall: these are private,

i.e. invisible for users of the class; here we get a copy of
them for reading)

double Complex::Get_Re() const {return re;}
double Complex:: Get_Im() const {return

im;}

• Computing the modulus:

double Complex::abs() const {return
sqrt(re*re+im*im);}

Complex class

Inline functions
In the case of inline functions, the compiler replaces the function
call statement with the function code itself (process called
expansion) and then compiles the entire code.
• There are two ways to do this:

(1) Define the member-function inside the class definition.
(2) Define the member-function outside the class definition and

use the explicit keyword inline:

inline double Complex::Get_Re() const
{return re;}

When are inline functions useful? Inline functions are best for
small functions that are called often!

Complex class

The const concept

A const member function is a member function that guarantees
it will not modify the object.
As we have seen, to make a member function const, we simply
append the const keyword to the function prototype, after the
parameter list, but before the function body.

double Complex::Get_Re() const {return re;}

Complex class

The const concept

Any const member function that attempts to change a member
variable or call a non-const member function will cause a
compiler error to occur.

void Complex::Set_Re() const {re=0;} //
compile error, const functions can’t change
member variables.

Rule: Make any member function that does not modify the state
of the class object const.
Remark: Note that constructors cannot be marked as const.

Complex class

The const concept

• Recall that const variables cannot be changed:

const double p=3;
p=4; // ILLEGAL!! compiler error

• const arguments (in functions)

void myfunc (const Complex& c)
{c.re=0.2; /* ILLEGAL!! compiler error }

Complex class

The const concept
• const Complex arguments can only call const functions:

double myabs (const Complex& c)
{return c.abs();} // ok, because c.abs() is

a const function.

• Without const in

double Complex::abs () {return
sqrt(x*x+y*y);}

the compiler would not allow the c.abs call in myabs

double myabs (const Complex& c)
{return c.abs();}

because Complex::abs is not a const member function

Complex class

Question: how to create a complex number which is the
sum of two complex numbers?

Complex c1 (1,2);
Complex c2(2,3);

Complex sum=c1+c2;

Answer: Overload the operator "+"

Complex class

Overloading the "+" operator

• To overload the + operator, first notice that the + operator
will need to take two parameters, both of them of Complex
type. To be more precise, these parameters must be const
references to Complex.
• The operator + will return a Complex containing the result of

the addition.
• To overload the + operator, we write a function that

performs the necessary computation with the given
parameters and return types. The only particular thing about
this function is that it must have the name operator+.

Complex class

• The meaning of + for Complex objects is defined in the
following function

Complex operator + (const Complex& c1,
const Complex& c2)

• The compiler translates

c=a+b;

into

c= operator+(a,b);

Complex class

There are several ways to define the operator +.

First possibility:

Complex operator+ (const Complex& a, const
Complex& b)

{ Complex temp;
temp.Set_Re(a.Get_Re()+b.Get_Re());
temp.Set_Im(a.Get_Im()+b.Get_Im());
return temp;}

Complex class

Second possibility

Complex operator+ (const Complex& a, const
Complex& b)

{ return Complex (a.Get_Re()+b.Get_Re(),
a.Get_Im()+b.Get_Im());}

Complex class

Third possibility

Complex operator+ (const Complex& a, const
Complex& b)

{ Complex temp;
temp=a;
temp+=b;
return a;

}

Here we use the following idea: we can first overload the
assignment operator (=) and the operator + = as member
operators. Using these operators, one can overload the
non-member operator +.

Complex class

The assignement operator
• Writing

a=b;

implies a call

a.operator= (b)

- this is the definition of assignement

Complex class

The assignement operator
• We implement operator= as a part of the class:

Complex& Complex::operator= (const Complex&
c)

{
re=c.re;
im=c.im;
return *this;

}

• If you forget to implement operator=, C++ will make one (this
can be dangerous)

Complex class

The multiplication operator

• First attempt

Complex operator* (const Complex& a, const
Complex& b)

{
Complex h; // Complex()
h.re=a.re*b.re-a.im*b.im;
h.im=a.im*b.re+a.re*b.im;
}

Complex class

The multiplication operator
• Alternative (avoiding the h variable)

Complex operator* (const Complex& a, const
Complex& b)

{
return Complex(a.re*b.re-a.im*b.im,

a.im*b.re+a.re+b.im)
}

Complex class

Remark
• The member operators + =, − = can be implemented in the

same way as =

• The non-member operators −, / can be implemented in the
same way as + and ∗.

Complex class

Constructors

• Recall that constructors are special functions that have the
same name as the class
• The declaration statement

class q;

calls the member function Complex()
• A possible implementation is

Complex:: Complex {re=im=0.0;}

In this case, declaring a complex number means making the
number (0,0).

Complex class

Constructors with arguments
• The declaration statement

class q(-3,1.4);

calls the member function Complex(double, double)
• A possible implementation is

Complex:: Complex (double re_, double im_)
{re=re_; im=im_; }

Complex class

Constructors with arguments
• A second possible implementation is

Complex:: Complex (double re, double im)
{this->re=re; this->im=im; }

Note that in this case we use the pointer this, since we have
parameters with the same name as the private members.

Complex class

Copy constructor/Assignment operator
• The statements

Complex q=b;
Complex q(b);

makes a new object q, which becomes a copy of b. In this
case, the copy constructor is called.
• Note the difference with respect to:

Complex b;
Complex q;
q=b;

where first the default constructors are called and then the
assignement operator is used.

Complex class

Copy constructor

• First implementation :

Complex::Complex (const Complex& c)
{re=c.re; im=c.im; }

• Implementation in terms of assignement:

Complex::Complex (const Complex& c)
{*this=c; }

• Recall that this is a pointer to "this object", *this is the
present object, so *this=c means setting the present object
equal to c, i.e. this→ operator=(c)

Complex class

Copy constructor

• The copy constructor defines the way in which the copy is
done. This also includes the argument. That’s why the
following statement

Complex::Complex (const Complex c):
re(c.re), im(c.im){}

represents an ERROR. In this case, this call would imply an
infinite recurrence.

RULE: The correct declaration of the copy constructor is

Complex (const Complex& c);

Dont’ forget the & symbol!

Complex class

Overloading the output operator
• Output format of a complex number: (re,im), i.e. (1.4,−1)
• Desired user syntax:

cout<<c;

• The effect of « for a Complex object is defined in

ostream& operator<< (ostream& o, Const
Complex& c)

{o<< "(" <<c.Re()<< ","<<c.Im()<<")";
return o;}

Complex class

Some comments on the overloaded operator <<

• The operator << is defined as a non-member function.
• The operator << always takes an ostream in its first input.

This is because we always have a stream on the left of <<
(ostream is a class and cout is an object of "type" ostream).
• The second parameter is, in this case, a Complex. This is

because this is the type of data we wish to print out.
• The function operator << returns a reference to the

ostream. This will in practice always be the same ostream
that we pass in as the parameter out.

Complex class

Why returning by reference?

• Recall that return by reference is acceptable so long as you
don’t return a reference to a local variable . Return by
reference is more efficient than return by value, since it
avoids copying (recall that when a function returns by value,
the copy constructor is called).
• One effect of returning a reference is that whoever receives

the reference can use that reference to modify whatever it
points to. See an example on the following slide.

Complex class

Why returning by reference?

Consider the code:

cout<<"To be"<<"or not to be";

This code is equivalent to the following:

(cout<<"To be")<<"or not to be";

This shows why the fact the the operator << returns a stream by
reference is useful. We can apply the << operator again!

Working with different files

Working with different files

When writing programs, we try to split the program into
independent pieces or modules. In general, we create three files:

Header file describing the class members (data and
functions). The header file has the extension .h
The implementation of the class goes into the .cpp file
File containing the program that uses your class (which has
the extension .cpp).

Remark: In the case when we don’t have classes, only
functions: Function declarations must be done in the header file
and the definitions go into the .cpp file.

Working with different files

File: Complex.h

pragma once
class Complex
{
private:
double re;
double im;
public:
Complex();
Complex(double x, double y);
Complex(const Complex& c);
~Complex(){};
double Get_Re();
Complex& operator=(const Complex&); // and all

the functions and operators
};

Working with different files

File: Complex.cpp

include "Complex.h"
Complex::Complex(): re(0.0), im(0.0){};
Complex::Complex(double x, double y){re=x;

im=y;};
double Complex::Get_Re()
{
return re;
};

// and the other definitions

Working with different files

File: main.cpp

#include <iostream>
include "Complex.h"

using namespace std;

int main()
{
Complex z1; // default constructor
cout<<z1.Get_Re()<<endl;
return 0;
}

Working with different files

Some rules:
Pragma once
Every header file has to start with pragma once. The
reason you should start every file with pragma once is that it
stops the same file being include twice.
Don’t include definitions of functions in the header file,
except for the inline functions!
Don’t use using namespace std in a header file.
Another rule you should follow is to never have circular
dependencies through include. For example, two header
files should not include each other.
Each .cpp file has to include the header file.

Summing up

Classes
Constructor/destructor
This pointer
Classes with static memebrs

Overloading operators
Study case: Complex class
Working with different files

